## Fundamental Algorithms 4

## Exercise 1

1. Try the Recursion Tree Method for the following recurrence:

$$
T(n)=T\left(\frac{1}{3} n\right)+T\left(\frac{2}{3} n\right)+\theta(n)
$$

assuming that all occurring divisions are without remainder and $T(1)=0$.
2. Show that the height of the recursion tree is in $O(\log (n))$.
3. What could be a flaw using the recursion tree method for such unbalanced trees?
4. Show that $T(n) \in \theta(n \log (n))$, anyway, by using the substitution method.

## Exercise 2

For the so-called BFPRT Algorithm, an algorithm to determine the median element of an array, we obtain the following (slightly simplified) recurrence equation for its running time $T(n)$ (depending on the number $n$ of elements):

$$
T(n)=s(n, k)+T\left(\frac{1}{k} n\right)+T\left(\frac{l}{2 k} n\right)
$$

$k$ and $l$ are parameters ( $k$ usually small, for example $k=3$ or $k=5$ ) where $k=2 l+1$. For the function $s$, we can assume $s(n, k) \in \Theta(n \log k)$.

1. Show that $T(n) \in O(n)$.
2. Does it make sense to use growing values for $k$ (and $l$, respectively)?
